/ricerca/ansait/search.shtml?tag=
Mostra meno

Se hai scelto di non accettare i cookie di profilazione e tracciamento, puoi aderire all’abbonamento "Consentless" a un costo molto accessibile, oppure scegliere un altro abbonamento per accedere ad ANSA.it.

Ti invitiamo a leggere le Condizioni Generali di Servizio, la Cookie Policy e l'Informativa Privacy.

Puoi leggere tutti i titoli di ANSA.it
e 10 contenuti ogni 30 giorni
a €16,99/anno

  • Servizio equivalente a quello accessibile prestando il consenso ai cookie di profilazione pubblicitaria e tracciamento
  • Durata annuale (senza rinnovo automatico)
  • Un pop-up ti avvertirà che hai raggiunto i contenuti consentiti in 30 giorni (potrai continuare a vedere tutti i titoli del sito, ma per aprire altri contenuti dovrai attendere il successivo periodo di 30 giorni)
  • Pubblicità presente ma non profilata o gestibile mediante il pannello delle preferenze
  • Iscrizione alle Newsletter tematiche curate dalle redazioni ANSA.


Per accedere senza limiti a tutti i contenuti di ANSA.it

Scegli il piano di abbonamento più adatto alle tue esigenze.

Torna a camminare grazie a un ponte digitale fra cervello e midollo spinale VIDEO

Torna a camminare grazie a un ponte digitale fra cervello e midollo spinale VIDEO

Era paralizzato da 11 anni, si apre una nuova frontiera

25 maggio 2023, 09:58

Enrica Battifoglia

ANSACheck

Il primo paziente tornato a camminare grazie a un ponte digitale che collega il cervello direttamente al midollo spinale (fonte: CHUV / Gilles Weber) - RIPRODUZIONE RISERVATA

Il primo paziente tornato a camminare grazie a un ponte digitale che collega il cervello direttamente al midollo spinale (fonte: CHUV / Gilles Weber) - RIPRODUZIONE RISERVATA
Il primo paziente tornato a camminare grazie a un ponte digitale che collega il cervello direttamente al midollo spinale (fonte: CHUV / Gilles Weber) - RIPRODUZIONE RISERVATA

"Ho reimparato a camminare": Gert-Jan, 40 anni, si muove di nuovo a 11 anni dall'incidente che gli ha paralizzato gambe e braccia perché ora il suo cervello può dialogare direttamente con la parte del midollo spinale che controlla il movimento, tanto da permettergli di stare in piedi e camminare in modo naturale. Per ora è l'unica persona sulla quale è stata sperimentata la nuova tecnica, descritta sulla rivista Nature,  ma è già chiaro che si è aperta una nuova frontiera nel campo della riabilitazione. L'obiettivo è permettere alle persone paralizzate di tornare a muoversi nel modo più naturale possibile, per esempio adattando il passo anche su terreni irregolari, senza perdere l'equilibrio.

A rendere possibile questo risultato è stato il gruppo di ricerca del Politecnico di Losanna guidato da Grégoire Courtine, lo stesso che nel febbraio 2022 aveva sperimentato un sistema di elettrodi controllabile con un tablet, che inviava stimoli elettrici ai muscoli in modo programmato. "Il nuovo approccio è completamente diverso", ha detto Courtine nella conferenza stampa organizzata da Nature.

"E' un ponte digitale, quello che abbiamo stabilito fra il cervello e il midollo spinale. Non si tratta di una semplice stimolazione, ma - ha osservato - di un'interfaccia che rende possibile una conversazione diretta fra il cervello e il midollo spinale". Vale a dire che "c'è una sincronia fra l'intenzione di camminare e l'azione del camminare".

 

 

Rappresentazione grafica del ponte digitale fra cervello e midollo spinale (fonte: Frederic-Merlos)

 

E' il cervello a calibrare i comandi, adattandoli in tempo reale alla situazione che il paziente sta affrontando. Questo, osservano i ricercatori, "si traduce in un significativo aumento nella qualità della vita, con la possibilità di camminare da soli nelle vicinanze di casa, di entrare e uscire da un'automobile, o di bere con gli amici in piedi al bancone di un bar".

Sono stati necessari cinque minuti per calibrare il dispositivo, che è rimasto stabile ed efficiente per oltre un anno, anche quando l'uomo si trovava in casa senza la supervisione dei ricercatori. "Sono riuscito a stare in piedi sulle mie gambe, ho imparato a camminare in modo naturale e posso controllare i miei movimenti e la mia forza", ha detto ancora Gert-Jan nella conferenza stampa.

Il sistema alla base del ponte digitale è ancora ingombrante: 64 elettrodi registrano i segnali della corteccia sensomotoria utilizzando frequenze che l'intelligenza artificiale ha permesso di individuare, quindi i segnali vengono tradotti in segnali elettrici e trasmessi al midollo spinale, dove sono ricevuti da 16 elettrodi e decodificati in tempo reale, senza che per questa funzione sia necessario un computer. Tutto questo richiede un sistema di controllo indossabile, contenuto in uno zainetto.

"Il nostro prossimo obiettivo è avere sistemi molto piccoli e prevediamo che la tecnica potrà avere sviluppi incredibili grazie alla miniaturizzazione", ha osservato Courtine. Parallelamente i ricercatori sono al lavoro per proseguire la sperimentazione, che nella prossima tappa prevede il coinvolgimento di tre persone paralizzate..

Riproduzione riservata © Copyright ANSA

Da non perdere

Condividi

O utilizza